
 1 Copyright © 2012 by ASME 

DRAFT 

Proceedings of the ASME 2012 6th International Conference on Energy Sustainability & 10th Fuel Cell Science, 
Engineering and Technology Conference 

ESFuelCell2012 
July 23-26, 2012, San Diego, CA, USA  

Submitted for dual-review in ASME Journal of Energy Resources Technology 

 
 

ESFuelCell2012-91300 

AN ARTIFICIAL NEURAL NETWORK IN SHORT-TERM ELECTRICAL LOAD 
FORECASTING OF A UNIVERSITY CAMPUS: A CASE STUDY 

 
 

David Palchak 
Department of Mechanical Engineering,  

Colorado State University 
Fort Collins, CO, USA 

Siddharth Suryanarayanan 
Department of Electrical & Computer Engineering,  

Colorado State University 
Fort Collins, CO, USA 

 
 

Daniel Zimmerle 
Engines & Energy Conversion Laboratory,  

Colorado State University 
Fort Collins, CO, USA 

 
 

ABSTRACT 
 
This paper presents an artificial neural network (ANN) for 

forecasting the short-term electrical load of a university campus 
using real historical data from Colorado State University. A 
spatio-temporal ANN model with multiple weather variables as 
well as time identifiers, such as day of week and time of day, 
are used as inputs to the network presented. The choice of the 
number of hidden neurons in the network is made using 
statistical information and taking into account the point of 
diminishing returns. The performance of this ANN is quantified 
using three error metrics: the mean average percent error 
(MAPE); the error in the ability to predict the occurrence of the 
daily peak hour; and the difference in electrical energy 
consumption between the predicted and the actual values in a 
24-hour period. These error measures provide a good indication 
of the constraints and applicability of these predictions. In the 
presence of some enabling technologies such as energy storage, 
rescheduling of non-critical loads, and availability of time of 
use (ToU) pricing, the possible DSM options that could stem 
from an accurate prediction of energy consumption of a campus 
include the identification of anomalous events as well the 
management of usage. 

NOMENCLATURE 
AMI Advanced metering infrastructure 
ANN Artificial neural network 

DSM Demand-side management 
LM Levenberg-Marquardt 
MAPE Mean average percent error 
MLP Multilayer perceptron 
NARx Nonlinear autoregressive with exogenous input 
STLF Short-term load forecasting 
ToU Time of use 

 
INTRODUCTION 

 
Electrical distribution designers and operators have 

extensively used electrical load forecasting for resource 
planning and generation dispatch [1–3]. These predictions are 
often based on inputs such as weather variables, time of day, 
and type of day. With the advent of Smart Grid technologies 
such as an advanced metering infrastructure (AMI), 
information regarding electrical power consumption is often 
available in real-time and the techniques of load forecasting 
developed for utilities are proving useful in predicting electrical 
load on a consumer scale [4–6]. The alteration of electrical 
energy consumption based on this information, termed demand-
side management (DSM), offers opportunities for the consumer 
to increase efficiency or decrease costs of their electrical power 
usage. Utilities could also apply this information to make 
decisions about capacity deferrals and peak shaving.  

Predicting the load on a system helps operators minimize 
the costs associated with operations and generation efficiency, 
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as well as increases the reliability of meeting demand. While 
forecasting has been largely focused on a utility scale, the 
opportunity to use these techniques is being explored on a 
consumer or end-user level, through DSM. DSM is a term 
originally coined as “systematic utility and government 
activities designed to change the amount and/or timing of the 
customer’s use of electricity,” although, this study encompasses 
the possible activities of consumers in DSM [7]. The objective 
of a DSM program is to reduce the price of electricity based on 
decreased capital costs to the utilities, as well as introduce more 
control to the active consumer, via information. This is a 
significant aspect of the desired characteristics of the Smart 
Grid outlined by the 110th Congress [8].    

 The concept of DSM represents a shift in paradigm of 
end-user energy consumption. Changing the levels and timing 
of electricity demand at the customer end is an alternative to 
utilities investing in more capital infrastructure, as well as an 
opportunity for consumers to engage in active participation of 
energy trade with utilities [9]. Added advantages include 
increasing energy efficiency, lowering emissions, and 
prolonging availability of traditional energy supplies [10]. The 
advent of Smart Grid technologies engages the customer with 
the utility to participate in decisions related to electricity 
consumption. This could potentially lead to a more automated 
decision-making process for facilities and building energy 
managers at the end-user level. A basis for this knowledge is an 
AMI that provides the participants information about electricity 
use. This is being done at many places around the country [11–
13], and the world [14], [15], including Colorado State 
University- the location of the case study presented in this 
paper- where power quality meters for single buildings are 
accessible over a secure internet site.    

Another strong influence on DSM is the changing rate 
structures of retail electricity. Deregulated markets are 
emerging all over the world, incentivized by the theory that 
competitive markets lead to the lowest possible rates. Most of 
these deregulated markets end up as only a skeleton of a fully 
competitive environment to protect the consumers at the 
secondary distribution levels from the high fluctuations in 
electricity prices, although some utilities have offered this 
option to the secondary distribution level (residential) 
customers [16]. A popular alternative is time of use (ToU) 
pricing. In the ToU structure, the price is based on historical 
and forecasted demand for a blocked time of the day. Prices are 
then set for a period of the day, with the intent to incentivize 
lowered electricity consumption during the forecast peak usage 
time of the system. Many utilities and regions are heading in 
this direction [17–19].  

Load forecasting is a necessary tool in DSM. Large electric 
distribution consumers, such as a university campus, have 
electricity bills that are considerable in the context of the 
operation cost of the university. Forecasting can help in 
determining where, if any, savings can be made, as well as 
uncover inefficiencies in the system. The opportunities for 
rescheduling certain loads could be further useful as new 
technologies such as energy storage are brought into the 

system. Short-term load forecasting (STLF) looks at forecasting 
load from a few minutes to a week ahead, and encompasses 
time spans that are pertinent to the DSM applications presented 
in this paper. 

STLF has become one of the major areas of research in 
electric power engineering because it is essential to the efficient 
operation of a power system. Many prediction techniques have 
been used, including statistical, expert system, and artificial 
intelligence [3]. The system load is influenced by a number of 
factors, including: economics, time, weather, and random 
effects [20]. One of the challenges associated with STLF is that 
these factors influence different areas in different ways and 
therefore require some specificity built into the prediction 
algorithms [21]. 

Artificial neural networks (ANNs) have received an 
extensive share of the research attention in STLF since the late 
1980’s. Hippert et al. explore the growth of ANNs in electrical 
load forecasting with particular focus on the variation with 
which the success is measured. The lack of any accepted 
standards for ANN reporting has led to skepticism within the 
power systems community, even though the ANNs often 
perform as well as, if not better than, the more standard models. 
The two main shortcomings in the associated literature has been 
a problem of over-fitting of the data and the lack of systematic 
testing of the network [22], [23]. 

The typical structure of ANNs in this area of research has 
24 output nodes representing the hourly loads of the day. Each 
of these hours has multiple inputs, which often includes 
historical data as well as weather and time variables. A number 
of statistical techniques as well as artificial intelligence have 
been combined with ANNs for pre and post-processing.  The 
pre-processing of data is best analyzed by considering the most 
correlated variables, with the calendar date being considered 
the most influential [22]. Separating the weekends from the 
weekdays is a popular method in pre-processing if the types of 
days are noticeably different in the region [24]. Weather 
variables are the second most important factor affecting load 
profile. Reference [25] presents an in-depth look at which 
variables most affected the load profile, based on case studies 
on a realistic system, i.e., the Egyptian Unified System, by 
calculating linear correlation coefficients. Significant findings 
of [25] include the identification of historical load as the most 
influencing factor, while temperature as the most influential 
weather variable, especially in summer and fall. 

Another challenge in neural network design is the decision 
on the complexity of the hidden layers [23], [26]. Extensive 
research has addressed this issue with a number of conclusions, 
but little agreement on a standardized method [22], [26]. The 
number of hidden layers, as well as the number of neurons in 
the hidden layers, affects the complexity of the network, and in 
turn, the ability of the ANN to give an accurate forecast with 
out-of-sample data [22], [23]. In this paper, a trial-and-error 
technique that looks at a different numbers of neurons is 
employed for this purpose. The technique presented in the 
paper also uses early stopping- a technique that employs a part 
of the data to test how well the network is generalizing. This is 
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known as cross-validation, and is a widely used technique that 
may achieve good generalization even if the neural network is 
designed with too many parameters [22], [27].  

The study presented in this paper focuses on the ability of 
an artificial neural network to predict the 24-hour load profile 
of a university campus by utilizing a number of weather 
variables, time identifiers, and historical data. A number of 
error measures that could be useful to decision-makers in a 
DSM application are also presented. 

 
METHODOLOGY 
 
Campus information and data 

Prior to describing the ANN, it is pertinent to present some 
descriptive details of the Colorado State University main 
campus. Colorado State University is located in Fort Collins, 
Colorado (N40 34.39686 W105 5.274 [28]) and has about 200 
buildings spread over an area of roughly one square mile which 
is used to varying degrees by a population of approximately 
30,000 enrolled students and 3850 faculty and staff members on 
the campus [29]. The average electrical load over the period 
considered in the case study is around eleven MW. The monthly 
climatic data for Fort Collins, CO is given in figure 1.  
 

 
 

Figure 1. Monthly climatic data for Fort Collins, CO [30]. 

The electrical load profiles of the Colorado State 
University main campus are forecast with an ANN that has 
weather variables and non-parametric identifiers as inputs. The 
electrical power data logged at the main campus of the 
Colorado State University, located in Fort Collins, is hourly, 
and spans the time period from June 2006 to June 2011, with 
weather variables collected for the same time period and at the 
same data granularity [31]. The network is tested on the last 
121 available days in the dataset (all days in 2011 for which 
data was available for this case study). Daily forecasts are 
produced for the 24-hour period starting at 1 A.M. The start and 
end times are arbitrary and could be changed in an energy 
management system to reflect the most efficient time of day to 
train the network without loss of forecast accuracy. The ANN is 
structured for data nearer in time to the prediction date to be 

more influential to the forecast. This time-series technique 
allows for growth and changes in consumption patterns over the 
five-year period to be accounted for by the network. 
 
Artificial neural network 

ANN’s perform computations to mimic the learning 
processes of the human brain. ANN’s consist of a parallel-
distributed structure of neurons that uses the learned knowledge 
to match inputs to outputs and make the “map” of the inputs to 
outputs available for use [27]. In the case of load forecasting, 
the inputs provided to the neurons of the network are: weather 
variables, historical power consumption data, and time 
identifiers, and the output response is the magnitude of the 
active power consumption in any given hour (kW). The kW 
value used in training is actually an average value of power 
over the previous hour, and the predicted outputs are handled in 
a similar manner.  

ANNs are especially useful in modeling non-linear 
relationships in part due to the non-linear structure of the 
neuron interconnections. Given the vastness of the literature on 
ANNs, the authors desist from providing a more detailed 
introduction to ANNs in this paper and point to the following 
classical references [27], [32] for a brief introduction to ANNs.  
 
Pre-processing of Data 

Processing of data is performed prior to training to 
improve the forecasts as well as focus the predictions on the 
days where load profile manipulation is most effective in 
offsetting costs and improving efficiency. Colorado State 
University has a distinct weekday profile that is different from 
the weekend, as illustrated in figure 2. This paper considers 
weekdays, termed ‘occupied days’, to be more important than 
weekends in load profile management; hence, the efforts are 
focused on forecasting the hourly electrical energy 
consumption for the ‘occupied days’. University holidays have 
a similar profile to the weekends, and are therefore part of an 
excluded set. Training the networks with only occupied days 
improves the performance of the prediction, although the 
distinction of occupied days is a subjective consideration given 
the nature of a campus that has varying degrees of activity. 
Standard semester breaks are considered ‘unoccupied,’ 
excepting winter break, which is observed to have enough 
activity over most of it to be included in the dataset for training 
and prediction. There were also a number of days where data 
was missing, and these have been excluded from the dataset. 
Another exclusion from training was an outlier created by a 
power outage event in Fort Collins. The reason for excluding 
the power outage event is justified by a four-nines (N9=3.9) 
reliability of electricity supply available to the campus [33]. 

Once the data has been processed to include only the 
occupied days, the dataset is divided into a training set and a 
validation set. The network described in this paper uses 75% of 
the data for training and the remaining 25% for validation. The 
purpose of a validation set is to avoid over-fitting of the data, 
which will decrease the generalization capabilities of the 
network causing poor predictions. A subset of the data is used 
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for evaluating the performance of the model. The validation set 
stops the training, commonly referred to as early-stopping, if 
over-fitting occurs.  
 

 
 

Figure 2. Typical weekday and weekend load profiles. 

Another step in pre-processing is the normalization of the 
data before being used for the training phase. Here, the 
minimum and maximum values of each category are 
normalized to [-1 1]. This is standard practice before applying 
the inputs to the network, as shown in [34], so that particular 
inputs are not overly influential because of the scale on which 
they are measured. An example of a day of exogenous inputs to 
the network is shown in table 1. The actual weather data logged 
at [31] for the corresponding day was used in the network for 
modeling weather-related variables, although in practice these 
variables could be based on forecasts. Reference [35] looks at 
how weather forecasting accuracy can affect the quality of the 
electrical load prediction, which is a possible avenue for 
continued research for this specific application. There is also a 
feedback loop that uses data from the previous 24-hour period 
as an input. 
 
Network Structure 

The ANN for STLF for the main campus of Colorado State 
University is a time-series forecaster that utilizes the sequence 
of inputs as informative to the prediction. Figure 3 shows the 
basic structure of the network. This is representative of a non-
linear autoregressive with external inputs (NARx) ANN, which 
is a dynamically-driven recurrent network that consists of an 
input layer, a hidden layer, and an output layer. The choice of 
one hidden layer is a combination of historical success [22], 
and the desire to maintain the simplicity of the architecture, in 
accordance with Occam’s razor, with acceptable predictions. 
The output power at time t is informed by inputs presented to 
the network with no delay, at time t, as well as with a one-hour 
delay, at time (t-1). The power from the previous 24-hours is 
the recurrent component of the network. The power output is 
fed back through to the input layer with a 24-hour delay 
associated with it, i.e., hours 1-24 of the previous day informs 
the output of hour 1 of the current day, and so on. The 

autoregressive aspect of the network acts to provide the last 
forecasted power value to the input side for the next step in the 
prediction. Figure 3 is simplified in that the delayed inputs are 
not shown.   
   
 

 
 

Figure 3. Architecture of the ANN. 

A recurrent network is a feed-forward, multilayer 
perceptron (MLP) network that attempts to build the 
autocorrelation structure of a series internally, essentially 
building a memory of how things are changing, which is used 
in the forecasting map [32].  This is especially important in the 
case presented in this paper because of the large period of time 
that the experimental dataset spans. The five-year period that is 
used for training involves many new building and energy-use 
renovations as well as new structures on campus. MLP 
networks are flexible, which makes them a good choice when 
there is high complexity within the data [32]. The hidden layer 
contains nonlinear neurons that perform continuous, nonlinear 
transformations of the weighted inputs [32]. The activation 
function employed here is the sigmoid logistic function, defined 
as, 
 

 𝑦 =
1

1 + 𝑒!!
 (1)  

 
where u is the input, and y is the value sent to the output layer, 
which is composed of a linear function.  
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Table 1. Example of exogenous inputs to ANN. 

 
Solar irradiance 

(W/m2) 
Temperature 

(°F) 
Relative humidity 

(%) 
Wind speed 

(mph) 
Day of week 

(1-7) 
Hour of 
day * 

0 66.7 66.8 3.3 2 0:00 
0 65.6 69.5 3.3 2 1:00 
0 64.9 72.4 1.5 2 2:00 
0 64.2 75.5 1.9 2 3:00 
0 64.3 74.6 2.6 2 4:00 

2.3 64.3 76.8 2.7 2 5:00 
46.3 64.1 77 1.4 2 6:00 

212.1 65.4 75 3.3 2 7:00 
411.3 67.4 71.4 4 2 8:00 
650.1 71 63.9 2.3 2 9:00 
805 73.6 58.4 2.6 2 10:00 

912.1 76.6 51.3 3.3 2 11:00 
879.6 78.5 48 5.5 2 12:00 
326.1 77.2 48.7 6.1 2 13:00 
263 76.6 48.2 5.8 2 14:00 

293.1 77.4 46.2 3.9 2 15:00 
276.1 68.5 61 4.6 2 16:00 
548 72.1 52.8 3.6 2 17:00 

300.3 72.6 48.9 4.5 2 18:00 
118 71.3 51.2 3.1 2 19:00 
6.2 68 60.3 5.6 2 20:00 
0 67.1 68.3 6.9 2 21:00 
0 66.9 68.5 5.3 2 22:00 
0 66.5 69 3.6 2 23:00 

* The actual input values for timescale are in a serial date number specific to Matlab®. 
 
 

Training consists of adjusting weights on the input layer 
and the output layer until the combination of weights and inputs 
creates an acceptable output. This is achieved by the 
Levenberg-Marquardt (LM) learning method, which is one of 
the most popular optimization methods and is often the most 
efficient at converging to the optimum weights [32]. It is a 
second-order method that combines the advantages of both the 
Gauss-Newton and steepest descent methods to minimize the 
error. The error measure used by LM is the mean squared error. 

The number of neurons in the hidden layer is an important 
aspect in designing the architecture of the ANN. There are 
many rules of thumb for choosing the number of neurons in the  
hidden layer, although there is no standardized method. It is 
often a subjective choice, which is exemplified in the extensive 
review of [22]. The approach presented here combines a 
measure of error on multiple test sets, as well as some 

subjectivity in the final decision. Observations of the prediction 
accuracy of the network with one to fifty neurons, on a single 
day as a test set, was used to determine the number of hidden 
neurons. Each network size was run thirteen times in hopes of 
achieving a good average, but was also constrained by 
computation time. The number of hidden neurons was decided 
based on the variance of the predictions and the diminishing 
returns in the mean average percent error (MAPE) when 
another neuron was added.   

 
Performance Measures 

There are a number of error measurements that are relevant 
for quantifying the performance of the model. The most widely 
reported error in neural network literature is the MAPE, given 
in (2), 
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 𝑀𝐴𝑃𝐸 =

𝐹 − 𝑇
𝑇

∗ 100

𝑛
 

(2)  

 
where 𝐹 is a (1xn) set of forecast values, 𝑇 is a (1xn) set of  
observed values, and n is the number of points being forecast, 
which in this case is 24. Three additional performance 
measures that are informative when looking at the forecasting 
accuracy are: 1) the ability to predict the hour of the peak; 2) 
the maximum error throughout a twenty-four period; and, 3) the 
difference in total electric energy consumed over the twenty-
four hour period, indicated by the area contained by the load 
profile curve (figure 2, load v. time).  The maximum error is 
the ratio of the largest residual to the target value ((𝑇!"#) 
occurring at that hour.  
 

 𝑀𝑎𝑥 𝑒𝑟𝑟𝑜𝑟 =  
𝐹 − 𝑇 !
𝑇!"#

∗ 100. (3)  

 
The energy difference is the ratio of the difference in electric 
energy consumption corresponding to the forecast and the 
observed values to the electric energy consumed corresponding 
to the observed values, for a 24-hour period.  
 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝐹 − 𝑇!!!

!
!!!
!

𝑇!!!
!

∗ 100 (4)  

 
Forecast Load Profile 

The forecast load profile is given as an average of a set of 
three load profiles output by the ANN for a given data input set. 
This is done in an attempt to minimize the random effects of 
the initialization of the weights. The test sets are 24-hour 
periods that are out-of-sample sets of data, meaning that the 
network has never been exposed to the day that is predicted. 
The training and validation sets are comprised of all the data 
available previous to the forecast day. In this case study, data 
corresponding to 121 separate forecast days, all of which are in 
2011, are presented.  
 
RESULTS 
 

The results of the hidden layer size test are shown in 
figures 4a and 4b. Each boxplot represents thirteen separate 
predictions on the same test day. The variability comes from the 
initialization of weights and biases. There is a decrease in the 
error as more neurons are added, although judgment is 
exercised to decide on the diminishing return obtained from the 
addition of an extra neuron. It is observed in figure 4 that there 
is a relatively small variance, no outliers, and low error around 
twenty neurons; hence, this is incorporated in the ANN 
architecture. A summary of three of the error measures is 
shown in table 2. 

 
Figure 4a. MAPE versus number of neurons in the hidden 

layer of the ANN. 

 
Figure 4b. A zoom-in of 0-5% MAPE versus number of 

neurons in the hidden layer of the ANN.  

 
Table 2. Summary of error measures from 121 forecasts. 

Average Error Value 
MAPE (%) 2.48 
Maximum error (%) 5.67 
Energy difference (%) 1.00 

 
The average of the three predicted values corresponding to 

each day is considered as the ‘forecast’ for that day, and the 
errors shown in table 2 represent the average of all 121 
‘forecasts.’  It is noted that according to [3], errors in the range 
of 2-3% are considered normal for a prediction period of 24-
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hours. Since this corresponds to a utility scale, the errors 
corresponding to the ANN presented in this paper, as shown in 
table 2, are acceptable.   

Figure 5 shows a histogram of the predicted peak hour of 
the ANN; on the x-axis is the difference (in hours) between the 
predicted peak and the actual peak. This is a measure of error 
that should be taken into consideration when evaluating the 
applicability of the forecasts. According to a Kolmogorov-
Smirnov test, these data do not have a standard normal 
distribution at 5% significance. The following observations can 
be made from figure 5: a) the ANN outputs with small time 
displacements between the predicted and actual values appear 
significantly more frequently than those outputs with larger 
time displacements between the predicted and actual values of 
the peak (i.e., greater than 3 hours, occurring at the tails in 
figure 5). This may present an issue when using the predicted 
outputs for DSM activities such as peak shaving, which require 
accurate predictions on the occurrence of the peak.  

 

  
Figure 5. Error in peak hour prediction of the 121 test days. 

 
 

Figure 6. Typical load profile and forecast for 24-hour 
period. 

The difference in electrical energy consumption over a 
twenty-four hour period between the predicted and actual 

values is smaller than the MAPE not only because it looks at a 
different measure, but because the energy difference is 
averaged over negative and positive residuals. The MAPE is 
penalized for misses, both high and low, because it uses the 
absolute value of the residual. An example of a predicted load 
profile forecast and the actual values is shown in figure 6. The 
MAPE on the sample day is 1.51%, which is below the average 
value shown in table 2. Figure 7 provides an indication on the 
performance of the ANN from the standpoint of the MAPE. It 
is observed that the distribution is skewed to the left, although 
there are some days that provided relatively poor predictions. 

 

 
Figure 7. MAPE over 121 test days. 

 

DISCUSSION 
 

The different error measures provide useful insight into 
how the forecast can be used for a varying approach to DSM. 
The ANN, in its present form, may be used for gaining 
predictive knowledge on the electrical load forecast of the 
university campus; which may then be used in achieving a 
DSM goal such as decreased overall daily electrical energy 
consumption. If it is advantageous for an active consumer to 
reduce peak demand based on some rate structure, or other 
motivation, it is vital to understand the limitations of the ANN’s 
ability to accurately predict the hour at which peak occurs. 
Improving on this aspect of the forecast is an avenue for further 
research, although realizing the limitations of the forecast could 
result in a successful localized application to peak shaving as 
well.  

The distribution of the MAPE provides an indicator to 
performance of the network - approximately 25% of the time 
the MAPE is over 3%. Future exploration into the context of 
these days (input data) may provide an explanation on the 
inability of the ANN to produce a better result. The authors 
acknowledge the existence of a simple explanation, although 
the relationship of the outputs to the day of the week was 
explored which yielded no clear correlation to poor predictions. 

The error in the daily electrical energy consumption 
suggests that this ANN could be useful in quantifying an energy 
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savings goal. There are a number of applicable situations on a 
university campus that may provide an avenue for 
reconciliation between the comfort of the campus occupants 
and the opportunity for energy savings. This could also be used 
in contract negotiations for energy saving measures with the 
local electric utility. 

The ANN forecasts may also be utilized by building energy 
managers as a medium to detect anomalous events. It may 
allow for the detection of faulty hardware before the 
performance of that hardware is noticeable on a utility bill, 
potentially saving days of inefficient operation of a building.  

Comparing this forecasting technique to a ‘simpler’ 
prediction algorithm such as multiple linear regression 
technique is currently underway, although data is not available 
for comparison at this time. The authors believe that it provides 
predictions that are accurate enough to make a DSM program 
feasible for a university campus type end-user.  

Further research involves applying this type of forecasting 
to smaller scales such as feeders and buildings within the end-
user campus, in an effort to make the DSM more manageable 
for decision makers. The decision making process that follows 
a forecast is also an area under investigation, and is the prime 
reason for exploring forecasting at this scale.        
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