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Abstract: We consider consensus networks whose nodes are integrators and whose edges are 2-
tuples of real rational functions representing dynamical systems that couple the nodes. We review
salient points from graph theory, including Laplacians, interconnection matrices, and consensus
protocols, all of which typically involve constructs with static weights. We then generalize these
notions to the case of graphs with integrating nodes and dynamic edges. We give conditions
under which such graphs admit consensus, meaning that in the steady-state the node variables
converge to a common value. The ideas are illustrated an example that motivated this work:
the modeling of thermal processes in buildings.
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1. INTRODUCTION

Recently there has been considerable interest in what is
called the consensus problem. In this problem we suppose
N agents ni evolve their individual belief ξi about a global
consensus variable ξ using nearest neighbor communica-
tions according to the consensus protocol

ξ̇i =−
∑
j∈Ni

λij(ξi − ξj), (1)

where Ni is the collection of indices of all agents nj

with whom agent ni can communicate. Readers can refer
to Olfati-Saber and Murray (2007) and the references
therein for a detailed review of this problem. Here we
simply note that to our best knowledge most studies in
the literature have focused on the case where the weights
λij are constants (or random variables). Motivated by the
problem of modeling the thermal processes in buildings,
in this paper we present a generalization of the consensus
problem whereby the weights are no longer static gains,
but instead represent dynamical systems.
Specifically, we consider problems of the form

Ξi(s) =−1

s

∑
j∈Ni

[
λS
ij(s)Ξi(s)− λC

ij(s)Ξj(s)
]
, (2)

where Ξi(s) is the Laplace transform of ξi(t) and we define
the real rational (transfer) functions λS

ij(s) and λC
ij(s)

to be the self-correction term and the cross-correction
term, respectively, for the node ni. With this notation,
we specifically mean that the consensus variable ξi is
calculated via

ξ̇i = −
∑
j∈Ni

qSij − qCij (3)

where qSij is calculated via the differential equation

BS
ij

(
d

dt

)
qSij = AS

ij

(
d

dt

)
ξi, (4)

where AS
ij(s) and BS

ii(s) are the numerator and denomina-

tor of λS
ij(s). q

C
ij is calculated similarly.

� The authors gratefully acknowledge the support of the National
Science Foundation from Grant CNS-0931748.

We will refer to (1) as the static consensus protocol and
(2) or (3) as the dynamic consensus protocol. Note then
that the dynamic consensus protocol extends the standard
static consensus protocol in two ways: (1) the connection
variables are transfer functions, and (2) we allow different
connection weights to multiply the current estimate of the
node and the estimates of other nodes.
Many systems fall into the dynamic consensus framework,
particularly large scale systems described by intercon-
nected storage elements. A specific example of this that
will be illustrated here is thermal processes in buildings.
When two rooms are separated by a wall (see Fig. 1) and
there are no external heat flows, the temperatures in each
room can be described by

Ti(s) = − 1

Cr
i s

[
Aij(s)

Bij(s)
Ti(s)− Dij(s)

Bij(s)
Tj(s)], (5)

where the various transfer functions are defined later in the
paper (following Lee and Braun (2008)). Similar to (2) we
see a cross-correction term and a self-correction term and,
when applying (5) to several interconnected rooms in a
building, the resulting expression can be seen to have the
same form as (2).
While the consensus behavior of uncontrolled building
thermal dynamics is fairly intuitive, the dynamic consen-
sus framework proposed here also provides a framework for
any control implementation that results in modification of
link weights. Our goal is to develop performance criterion
that clearly exhibit the effect of system structure (i.e.
interconnections) and can be checked using information
“local” to each node.
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Fig. 1. Two rooms connected by a wall using the 3R2C
model.
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The paper is organized as follows. We begin with a re-
view of some essential facts about graphs, interconnection
matrices, and consensus. We then formulate the idea of
dynamic consensus by defining a class of directed graphs
characterized by nodes that are integrators and arcs de-
scribed by real-rational transfer functions. For such graphs
we can define what we call the dynamic Laplacian of
the system. We then present our main result: when the
“DC-gain” of the dynamic Laplacian is an interconnection
matrix and a particular diagonal dominance condition is
satisfied by the weights λS

ij(s) and λC
ij(s), the graph admits

consensus, meaning all node variables converge to the same
value. These results are then illustrated with an example
of modeling the thermal processes in a building. The paper
concludes with comments on future research on this topic.

2. GRAPHS, INTERCONNECTION MATRICES, AND
CONSENSUS

Here we collect key points about graphs, interconnection
matrices, and consensus problems. While much of this
section is standard, in fact we have found a fair amount of
confusion in the consensus literature related to definitions
of graph-theoretic concepts. Unfortunately, space limita-
tions preclude clarifying these concepts here. Thus we
simply define the terms the way they are most commonly
used. Most of our notation and results follow Tuna (2009);
Egerstedt and Ji (2007); Caughman and Veerman (2006);
and Ren et al. (2003).

2.1 Graphs

Consider a weighted, directed graph as shown in Fig. 2.
Such graphs can be described as a set of nodes (or vertices)
N = {ni} connected by a set of arcs E = {(ni, nj) :
ni, nj ∈ N} (called edges if the graph is undirected).
We assume there are no self-loops associated with any
node. Following typical convention for directed graphs, we
associate the first entry in the ordered pair (ni, nj) with
the “tail” of the arc and the second with the “head” of
the arc. If there is an edge between nodes ni and nj we
say these nodes are adjacent (or neighbors). We denote the
out-degree neighbors of node ni as Ni = {j : (ni, nj) ∈ E};
that is, the set of nodes nj adjacent to ni that have a
head of an arc touching them that originates from node ni.
Each arc has an associated weight λij

1 . A path between
two nodes is a sequence of arcs by which it is possible to
“move” along the sequence of arcs from one of the nodes to
the other. If there is at least one node that has at least one
path to every other node, the graph is said to be connected.

The (weighted) Laplacian matrix of a (weighted) graph
is an important matrix in graph theory and its spectral
properties can be used to infer many facts about the graph.
When a graph is undirected there is no ambiguity in the
definition of the Laplacian, which is constructed using
what are called degree and adjacency matrices. However,
in the case of directed graphs the definitions found in
the literature can be confusing as the Laplacian can be
defined in in terms of the in– or out-degree and in– and
out-adjacency matrices (defined according to the number

1 We comment that in the consensus literature it is more common
to define the neighbors of a node using an in-degree convention.
In an in-degree convention, neighbors of node ni are defined to be
Ni = {j : (nj , ni) ∈ E}; that is, the set of nodes adjacent to ni
that have a tail of an arc touching them that ends at ni. In this
case the weight associated with arc (nj , ni) is typically defined to
be λij . Because we are motivated by a physical model that defines
dynamics in terms of flows (of energy) leaving a node, here we use
an out-degree convention. However, there is no loss of generality or
consistency in our approach.

3
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Fig. 2. Weighted directed graph.

of arcs entering or leaving a node, respectively), using
either an in-degree or out-degree convention for defining
neighbors, resulting in four possible ways to define the
Laplacian. Again, in this paper we adopt an out-degree
convention using the labeling scheme as shown in Fig. 2,
where a weight λij is interpreted as the weight associated
with an arc that leaves node ni and goes to node nj . Thus
we define the associated graph Laplacian L = [lij ] to be

lij =

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈Ni

λik i = j,

−λij i �= j and (i, j) ∈ E ,
0 otherwise.

To illustrate, for the (weighted) graph shown in Fig. 2 the
associated (weighted) Laplacian is given by⎡

⎢⎢⎣
λ12 + λ13 −λ12 −λ13 0 0 0

−λ21 λ21 + λ24 0 −λ24 0 0
0 0 λ35 0 −λ35 0
0 0 0 λ45 −λ45 0
0 −λ52 −λ53 0 λ52 + λ53 + λ56 −λ56

0 0 0 −λ64 0 λ64

⎤
⎥⎥⎦ .

A key result from graph theory is that a graph is connected
if and only if λ = 0 is a distinct eigenvalue of the Laplacian
matrix (Chung (1997)).

2.2 Interconnection Matrices

A matrix Λ = [λij ] is said to be an interconnection (or an
interconnection matrix) if its elements satisfy λij ≥ 0 for
i �= j and

λii = −
∑
i �=j

λij .

Notice that the Laplacian defined above is an interconnec-
tion matrix multiplied by −1. Thus it is common to talk
about the graph associated with (or induced by) a given
interconnection matrix and to view the interconnection
matrix of such as graph as the negative of the graph’s
Laplacian. We will say the interconnection Λ is connected
if its associated graph is connected.
For any interconnection matrix the following are true
(these are standard results from graph theory):

(1) The row sums of Λ are all zero.
(2) λ = 0 is an eigenvalue of Λ with eigenvector 1.
(3) The matrix is diagonally dominant.
(4) All non-zero eigenvalues are in the open left-half of

the complex plane.
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(5) The matrix exponential eΛt has row sum equal one
for all t (i.e., is a stochastic matrix).

For a connected interconnection matrix the following are
also true:
(1) λ = 0 is a distinct eigenvalue of Λ.
(2) eΛt → 1vT where v is a vector such that vTΛ = 0

(i.e., the left eigenvector of the eigenvector Λ = 0)
and

∑
vi = 1.

(3) For a vector x = [x1, x2, . . . , xN ]T , the solution of
ẋ = Λx satisfies xi → x∗ for some constant x∗ (i.e.,
consensus - see below).

2.3 Consensus Networks

As noted above, the multi-agent consensus problem sup-
poses that N agents evolve their individual belief ξi about
a so-called global consensus variable ξ using nearest neigh-
bor communications according to the consensus protocol

ξ̇i =−
∑
j∈Ni

λij(ξi − ξj). (6)

If we let ξ = (ξ1, . . . , ξN ) then we see that we can write

ξ̇ = Λξ where Λ is an interconnection matrix 2 . Thus if Λ
is connected then ξi → ξ∗ for some constant ξ∗. This key
result has been the basis of much of the literature on the
consensus problem.
Because we can associate a consensus protocol with an
interconnection matrix, which in turn can be associated
with a directed, weighted graph, we can likewise associate
a directed, weighted graph with a consensus problem if
we view the graph as having nodes that are integrators
acting on the difference between the node’s “value” ξi
and those “values” ξj of its neighbors, weighted by the
interconnection weight between the two nodes. Thus we
are led to call such a graph a consensus network. In the
next section we generalize this notion to the case where
the weighting is defined by a real rational function.

3. CONSENSUS NETWORKS OVER THE REAL
RATIONALS

We now consider graphs formed by nodes with multiple
terminals that are connected by weighted arcs where
the weights are represented as transfer functions taken
from real rational functions analytic in the right half of
the complex plane. These graphs are connected with the
dynamic consensus protocol introduced earlier, and the
dynamic Laplacian matrix is introduced. We then present
our main result.

3.1 Terminals and Interconnections over the Real Rationals

Consider Fig. 3. The node has several terminals, each of
which has a shared variable ξi, which is viewed as the node
variable corresponding to the consensus variable of the
overall graph. Each terminal also has its own associated
variable qij , which can be considered an “outgoing” flow
from node ni to node nj . We will typically associate one or
more terminals with an “input” variable, denoted here as
qini . In the general case we view a node as implementing a
transfer function that produces the node variable resulting
from the incoming and outgoing flows. Thus, as depicted
in Fig. 3 we have

Ξi(s) = Hi(s)

⎡
⎢⎢⎣
Qin

i (s)
Qi1(s)

...
Qip(s)

⎤
⎥⎥⎦ , (7)

2 Note that if xi ∈ Rn then such a consensus protocol has the
resulting form ẋ = (Λ⊗ In)x where ⊗ is the Kronecker product.

Hi(s)

· · ·

(qi1, ξi) (qi2, ξi)

(qi3, ξi)

(qip, ξi)

(qini , ξi)

Fig. 3. Node element.

where we use upper-case notation to denote the Laplace
transform of a lower-case variable. In the remainder of this
paper we consider the special case where each node is an
integrator. Thus we can write

ξ̇i(t) = qini (t)−
∑
j∈Ni

qij(t) (8)

or equivalently

sΞi(s) = Qin
i (s)−

∑
j∈Ni

Qij(s) (9)

Note that the use of the negative sign in (8) and (9) is
part of the definition of the node’s transfer function and
is motivated by the idea of “flows” into and out of the
node. Additionally, the neighbors of a node ni are again
defined in terms of those other nodes to which the “flow”
is directed.
Now consider the interconnection shown in Fig. 4. We
define the flow out of ni into node nj as qij(t) where
the “amount” of flow is defined in the complex frequency
domain by

Qij(s) =
[
λS
ij(s) −λC

ij(s)
] [Ξi(s)

Ξj(s)

]
, (10)

= λS
ij(s)Ξi(s)− λC

ij(s)Ξj(s), (11)

where λij(s) =
[
λS
ij(s) −λC

ij(s)
]
is the multi-dimensional

real rational weight defined above in (2), with self-
correction weight λS

ij(s) and cross-correction weight λC
ij(s).

Arcs defined in this way can be thought of as implementing
multi-input, single-output “transfer functions” between
the nodes that they connect. As such, arcs induce the
flows Qij(s) as a weighted function of the associated node
variables Ξi and Ξj .

ξi ξj
qij = λij

[
ξi
ξj

]

Fig. 4. Connection element.

3.2 Graphs over the Real Rationals

Now let us consider graphs comprised of the terminal and
interconnection elements described in the previous subsec-
tion for the special case when the nodes are integrators.
We will call such a graph a dynamic graph or a dynamic
consensus network. Combining (9) and (10) we get

sΞi(s) = Qin
i (s)−

∑
j∈Ni

[
λS
ij(s)Ξi(s)− λC

ij(s)Ξj(s)
]
.(12)
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Thus, if we define the vectors

Ξ(s) = [Ξ1(s) Ξ2(s) . . . ΞN (s)]
T
, (13)

Qin(s) =
[
Qin

1 (s) Qin
2 (s) . . . Qin

N (s)
]T

, (14)

then we can write

sΞ(s) = Qin(s)− L(s)Ξ(s), (15)

the matrix L(s) = [Lij(s)] is given as

Lij(s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
k∈Ni

λS
ik(s) i = j,

−λC
ij(s) i �= j and (i, j) ∈ E ,

0 otherwise.

We call L(s) defined in this way a dynamic Laplacian. For
illustration, consider the graph topology shown in Fig. 2.
For this system the dynamic Laplacian has the form shown
in (16).

4. MAIN RESULTS

To state the main results, it will be useful to define the set
S = {s : Re(s) ≥ 0, s �= 0} and the following.

Definition 4.1. L(s) is a dynamic interconnection matrix
if it satisfies the following properties:
(1) L(0) is an interconnection matrix.
(2) The elements of L(s) have no poles in the closed right

half of the complex plane.
(3) The diagonal elements of L(s) satisfy the following

positivity condition: for all s ∈ S, Re{Lii(s)} > 0.
(4) L(s) = [Lij(s)] satisfies the following diagonal domi-

nance condition: for all s ∈ S,

Re{Lii(s)} >
∑
j �=i

|Lij(s)|.

Remark 4.1. Although condition 3 implies that Lii(s) is
passive, the diagonal dominance condition does not require
Lij , j �= i to be passive.

Definition 4.2. A dynamic interconnection matrix is con-
nected if L(0) is connected.

We may now state the following result:

Theorem 4.1. Consider the system

sΞ(s) = L(s)Ξ(s), (17)

where L(s) is a connected dynamic interconnection matrix.
Then
(1) s = 0 is a distinct solution of det[sI + L(s)] = 0.
(2) All non-zero solutions of det[sI+L(s)] = 0 are in the

open left half of the complex plane.
(3) From any arbitrary set of initial conditions the node

variables come to consensus, meaning ξi(t) → ξ∗ for
some constant ξ∗.

Proof 4.1. See the appendix.

5. ILLUSTRATION

We illustrate our results for the example of modeling
thermal process in building. We first define the dynamic
equations associated with such processes. Then we give a
specific instantiation for a hypothetical four-room exam-
ple.

5.1 Thermal Processes in a Building

It is common to model the thermal processes in a building
using what is called a 3R2C model for the heat flow

between rooms (see Xu and Wang (2007)). The basic
model is depicted in Fig. 1 for the case when there are
no heat inputs to the system.
From Fig. 1, the node equation can be written as

Cr
i

dTi

dt
= −qij(t) (18)

or
sCr

i Ti(s) = −Qij(s). (19)
Likewise, the heat flows in Fig. 1 can be derived to be:[

Qij(s)
Qji(s)

]
=

1

Bij(s)

[
Aij(s) −Dij(s)
−Dij(s) Aji(s)

] [
Ti

Tj

]
, (20)

where
Aij(s) = 1 + aij1 s+ aij2 s

2,

Aji(s) = 1 + aji1 s+ aji2 s
2,

Bij(s) = bij0 + bij1 s+ bij2 s
2,

Dij(s) = 1 + dij1 s+ dij2 s
2;

and
aij1 = C4R5 + C2R3 + C2R5,

aij2 = C4C2R5R3,

aji1 = C4R1 + C4R3 + C2R1,

aji2 = C4C2R3R1,

bij0 = R5 +R3 +R1,

bij1 = C4R5R1 + C2R3R1 + C2R5R1 + C4R5R3,

bij2 = C4C2R5R3R1

dij1 = dij2 = 0;

Combining (20) and (19) gives[
sCr

i Ti(s)
sCr

i Tj(s)

]
= − 1

Bij(s)

[
Aij(s) −Dij(s)
−Dij(s) Aji(s)

] [
Ti

Tj

]
. (21)

Equation (21) defines the relationship between the temper-
atures in two rooms using the 3R2C model. Now suppose
that we have several rooms in a building. Interpreting each
room as an integrating room node in a graph, then we
could write

sTi(s) =
1

Cr
i

[Qin
i (s)−

∑
j∈Ni

Qij(s)], (22)

with the heat flows between any pair of nodes given by
(20). Note that (20) implies that for any two adjacent
nodes (rooms) we will have an arc from node ni to node
nj and another arc from node nj to node ni. But, it
would not be correct to consider the resulting graph to
be undirected, because the resulting weights are different
in each direction.

5.2 Hypothetical Four Room Example

Consider the four room example shown in Fig. 5. We
assume there are no inputs or ambient temperature. Intu-
itively, we know that in this case the room temperatures
will come to the same equilibrium, or in other words, the
node variables reach consensus. We will confirm that this
intuitive result can be predicted from the dynamic Lapla-
cian that defines the building thermal dynamics. Figure 6
depicts the same four room example as a graph. In this
figure the dynamic weights are given by

λij(s) =

[(
Aij

Bij

)
w

+
1

Rd
ij

−
(

1

Bij

)
w

− 1

Rd
ij

]
,(23)

where the terms Aij(s), Aji(s), Bij(s), and Dij = 1 are
defined by the 3R2C model given above, the subscript w
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L(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j=2,3

λS
1j(s) −λC

12(s) −λC
13(s) 0 0 0

−λC
21(s)

∑
j=1,4

λS
2j(s) 0 −λC

24(s) 0 0

0 0 λS
35(s) 0 −λC

35(s) 0
0 0 0 λS

45(s) −λC
45(s) 0

0 −λC
52(s) −λC

53(s) 0
∑

j=2,3,6

λS
5j(s) −λC

56(s)

0 0 0 −λC
64(s) 0 λS

64(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

1T

2T

3T

4T

Fig. 5. Hypothetical four room example.

denotes thermal pathways through walls, and the terms
1

Rd
ij

denote pathways through doors (note that not every

interconnection has a pathway through a door). It is read-
ily verified that the associated dynamic Laplacian, given in
(24) is in fact a connected dynamic interconnection matrix.
Thus we expect all room temperatures to converge to the

T1 T2

T3 T4

λ12(s)

λ13(s)

λ14(s)

λ21(s)

λ24(s)λ31(s)

λ34(s)

λ42(s)

λ43(s)

λ41(s)

Fig. 6. Hypothetical four room example as a graph.

same constant. This is confirmed in Fig. 7, which shows
a simple simulation of the dynamic consensus protocol
(3) for a nominal set of parameters available from the
authors upon request. Note that in this simulation, the
initial condition for (4) was taken to be zero, which is
equivalent to setting the temperature of the walls to zero.
Thus the value of the final temperature is less than the
initial room temperatures.
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Fig. 7. Simulation of four room building. Each line cor-
responds to a room temperature (temperatures in
degrees C).

6. CONCLUSIONS

In this paper we have generalized recent results on con-
sensus networks with static weights by introducing the
idea of consensus networks with real rational weights. We
defined the idea of a dynamic Laplacian and a dynamic
interconnection matrix and showed that when the dynamic
Laplacian was the negative of a connected dynamic inter-
connection matrix then the dynamic consensus network
achieves consensus. A representative example was given to
illustrate the ideas. In future work we will extend these
notions to consider controllability in the non-autonomous
case as well as to consider observability and identifiability.
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APPENDIX

The proof of Theorem 4.1 depends on the Gershgorin circle
theorem, and a characterization of solutions for systems
defined using a behavioral approach.

Lemma A.1. (Gershgorin cricle theorem). (see. e.g. Golub
and Van Loan (1996)) Let A ∈ C

n×n with elements aij .
Let Ri =

∑
j �=i |aij | and define D(aii, Ri) to be the closed

disk centered at aii with radius Ri. Then every eigenvalue
of A lies within at least one of the disks D(aii, Ri).

Lemma A.2. (Polderman and Willems (1998)). Givenm×
m polynomial matrix P (s), let λi, i = 1, · · · , N be the
distinct roots of detP (s) with multiplicity ni. Then the
solutions to
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

Rd
14

+
∑
j=2,3

A1j

B1j
− 1

B12
− 1

B13
− 1

Rd
14

− 1

B21

1

Rd
24

+
∑
j=1,4

A2j

B2j
0 − 1

B24
− 1

Rd
24

− 1

B31
0

1

Rd
34

+
∑
j=1,4

A3j

B3j
− 1

B34
− 1

Rd
34

− 1

Rd
41

−1
B42

− 1

Rd
42

− 1

B43
− 1

Rd
43

1

Rd
41

+
1

Rd
42

+
1

Rd
43

+
∑
j=2,3

A4j

B4j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

P

(
d

dt

)
x(t) = 0

are of the form

x(t) =

N∑
i=1

ni−1∑
j=0

αijt
jeλit

where αij are constants.

Proof of Theorem 4.1:
1) This follows directly from the fact that L(0) is con-
nected.
2) Suppose, to the contrary, there exists s∗ such that
det[s∗I + L(s∗)] = 0 and s∗ ∈ S. Since L(s) is a dynamic
interconnection matrix, L(s∗) is finite. Note that s∗ is an
eigenvalue of −L(s∗). Define D(a,R) to be the closed disk
in the complex plane centered at a, with radius R. By
the Gershgorin circle theorem, the eigenvalues of −L(s∗)
are contained in the disks D(−Lii(s

∗), Ri) where Ri =∑
j �=i |Lij(s

∗)|. By the positivity and diagonal dominance
conditions of a dynamic interconnection matrix, none of
these disks intersect S, which leads to a contradiction.
Thus there exists no solution in S.
3) Given 1), this claim is proven if we can show that
no solution to (17) exists with modes in S. Let Bi(s) be
the least common multiple of the denominators of the ith
row of L(s), and let B(s) = diag [B1(s) B2(s) · · · Bm(s)].
Let C(s) = B(s)L(s). Note that both B(s) and C(s)
are polynomial matricies. Then it can be shown (see e.g.
Polderman and Willems (1998)) that the solutions to (17)
are given by ξ(t) that satisfy

(sB(s) + C(s))|s= d
dt
ξ(t) = 0

and by Lemma A.2 the allowable time domain modes of
ξ(t) are given by the roots of det (sB(s) + C(s)). Note
that since B(s) has no roots in the closed right half
plane, the solutions to det (sB(s) + C(s)) = 0 on S are
identical to the solutions of det

(
sI +B−1(s)C(s)

)
=

det (sI + L(s)) = 0. However, by part 2, there are no
solutions in s ∈ S which proves the claim.
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